Charging the polluters: A pricing model for road and railway noise

Henrik Andersson
Toulouse School of Economics (UT1, CNRS, LERNA), France

Mikael Ögren
VTI (Dept. of Environment and Traffic Analysis), Sweden

November 16, 2011
Background (I)

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)
Background (I)

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)

- Total external costs (excluding congestion costs) from transport in 2000 for the “EU 17” was 650 billion euros, which corresponded to 7.3% of the total GDP (OECD, 2006)
Background (I)

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)

- Total external costs (excluding congestion costs) from transport in 2000 for the “EU 17” was 650 billion euros, which corresponded to 7.3% of the total GDP (OECD, 2006)

- W/o market failures no need for intervention - individuals’ decision would maximize social welfare
Background (I)

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)

- Total external costs (excluding congestion costs) from transport in 2000 for the “EU 17” was 650 billion euros, which corresponded to 7.3% of the total GDP (OECD, 2006)

- W/o market failures no need for intervention - individuals’ decision would maximize social welfare

- This study focus on the noise externality: “Travelers” likely to only consider the noise level inside the vehicle
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect

Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)

- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable
- Previous research:
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)

- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable

- Previous research:
Background (II)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable
- Previous research:
Objectives

Objectives are threefold:

1. to design noise pricing models based on the marginal cost principle
Objectives

Objectives are threefold:

1. to design noise pricing models based on the marginal cost principle

2. to outline how to calculate the marginal acoustical effect from road and rail traffic noise
Objectives

Objectives are threefold:

1. to design noise pricing models based on the marginal cost principle
2. to outline how to calculate the marginal acoustical effect from road and rail traffic noise
3. conduct several “sensitivity tests”
Objectives

Objectives are threefold:

1. to design noise pricing models based on the marginal cost principle

2. to outline how to calculate the marginal acoustical effect from road and rail traffic noise

3. conduct several “sensitivity tests”
 - Traffic volume
Objectives

Objectives are threefold:

1. to design noise pricing models based on the marginal cost principle

2. to outline how to calculate the marginal acoustical effect from road and rail traffic noise

3. conduct several “sensitivity tests”
 - Traffic volume
 - Benefits transfer
Objectives

Objectives are threefold:

1. to design noise pricing models based on the marginal cost principle

2. to outline how to calculate the marginal acoustical effect from road and rail traffic noise

3. conduct several “sensitivity tests”
 - Traffic volume
 - Benefits transfer
 - ...
Marginal cost pricing and economic efficiency

\[D = MB \]

\[Q_p \]

Andersson, H (TSE)
Marginal cost pricing and economic efficiency

\[P = MC_p \]

\[Q_s^* \quad Q_p \]

\[D = MB \]

\[\tau \]

\[a \]

\[\text{MC}_s \]

\[\text{MEC} \]
The short run marginal cost (SRMC)

Social cost:

\[S = \int_0^{\infty} C(L(Q, r, X))n(r)dr \]
The short run marginal cost (SRMC)

Social cost:

\[S = \int_{0}^{\infty} C(L(Q, r, X)) n(r) \, dr \]

SRMC:

\[M = \frac{\partial S}{\partial Q} = \int_{0}^{\infty} \frac{\partial C(L(\cdot))}{\partial L} \frac{\partial L(\cdot)}{\partial Q} n(r) \, dr \]
The short run marginal cost (SRMC)

Social cost:

\[
S = \int_{0}^{\infty} C(L(Q, r, X)) n(r) dr
\]

SRMC:

\[
M = \frac{\partial S}{\partial Q} = \int_{0}^{\infty} \frac{\partial C(L(\cdot))}{\partial L} \frac{\partial L(\cdot)}{\partial Q} n(r) dr
\]

Empirical model:
The short run marginal cost (SRMC)

Social cost:

\[S = \int_0^\infty C(L(Q, r, X))n(r)dr \]

SRMC:

\[M = \frac{\partial S}{\partial Q} = \int_0^\infty \frac{\partial C(L(\cdot))}{\partial L} \frac{\partial L(\cdot)}{\partial Q} n(r)dr \]

Empirical model:

\[T = \sum_L c(L(\cdot))N(L)\Delta L \]

\[c(L(\cdot)) = \frac{\partial C(L(\cdot))}{\partial L} \]

\[N(L) = n(r)\Delta r \]

\[\Delta L = \frac{\partial L(\cdot)}{\partial Q} \]
The 3 components of the model

1. Cost (monetary) component: $c(L(\cdot))$
The 3 components of the model

1. Cost (monetary) component: $c(L\cdot)$

2. Exposed individuals: $N(L)$
The 3 components of the model

1. Cost (monetary) component: \(c(L(\cdot)) \)

2. Exposed individuals: \(N(L) \)

3. Marginal acoustical effect: \(\Delta L \)
Charging the polluters

- Research area and data
- Lerum and data sources

Data sources:
1. Öhrström, et al. (2005): Noise levels and number of exposed individuals
2. Andersson et al. (2010a,b): Monetary estimates
Charging the polluters

- Research area and data
- Lerum and data sources

Data sources:
1. Öhrström, et al. (2005): Noise levels and number of exposed individuals
2. Andersson et al. (2010a,b): Monetary estimates
Charging the polluters

- Research area and data
- Lerum and data sources

Survey area
Railway
Road (E20)
Urbanized area

Data sources:
1. Öhrström, et al. (2005): Noise levels and number of exposed individuals
2. Andersson et al. (2010a, b): Monetary estimates
Charging the polluters

- Research area and data
- Lerum and data sources

Survey area
Railway
Road (E20)
Urbanized area

Data sources:
1. Öhrström, et al. (2005): Noise levels and number of exposed individuals
2. Andersson et al. (2010a,b): Monetary estimates
Charging the polluters

Data sources:

1. Öhrström, et al. (2005): Noise levels and number of exposed individuals
Charging the polluters

Research area and data

Lerum and data sources

Data sources:

1. Öhrström, et al. (2005): Noise levels and number of exposed individuals

2. Andersson et al. (2010a,b): Monetary estimates
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{AEq,24h}$
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, \(L_{AEq,24h} \)
- The “day, evening, night indicator”, \(L_{DEN} \), can also be used
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{\text{AEq,24h}}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{\text{AEq,24h}}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{AEq,24h}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{AEq,24h}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized Nordic methods, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{\text{AEq,24h}}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{\text{AEq,24h}}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized \textit{Nordic methods}, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck
 - Railway: X2, X14, X60 (passenger), and Rc (freight)
 - Quiet technology: Low-noise tires and retrofitting of breaks (from cast iron to K-blocks)
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{AEq,24h}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{AEq,24h}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck
 - Railway: X2, X14, X60 (passenger), and Rc (freight)
Noise indicators and emitters

- We employ the 24 hour A-weighted equivalent level, $L_{AEq,24h}$
 - The “day, evening, night indicator”, L_{DEN}, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the “official” calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck
 - Railway: X2, X14, X60 (passenger), and Rc (freight)
- Quiet technology: Low-noise tires and retrofitting of breaks (from cast iron to K-blocks)
Marginal acoustical change

- A difference between road and railway is that for the latter there is usually only one source of the emission.

<table>
<thead>
<tr>
<th></th>
<th>Secondary road, 1,000 veh./24h</th>
<th>Primary road, 20,000 vehicles per 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>50 dB</td>
<td>70 dB</td>
</tr>
<tr>
<td></td>
<td>55 dB</td>
<td>70 dB</td>
</tr>
<tr>
<td></td>
<td>70 dB</td>
<td>70 dB</td>
</tr>
</tbody>
</table>
Marginal acoustical change

- A difference between road and railway is that for the latter there is usually only one source of the emission.

- Observation where secondary sources dominate regarding road noise have been omitted \Rightarrow 10% have been removed.
Distribution of “exposed”

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor - the motorway corridor
Distribution of “exposed”

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor - the motorway corridor
- To simplify the sensitivity analysis a functional form was fitted to the population data: \(N(L) = 10^{-0.102L + 8.20}, \ L \geq 50 \) (⇒ error of less than 5%)
Distribution of “exposed”

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor - the motorway corridor
- To simplify the sensitivity analysis a functional form was fitted to the population data: \(N(L) = 10^{-0.102 L + 8.20}, \quad L \geq 50 \) (⇒ error of less than 5%)
Distribution of “exposed”

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor - the motorway corridor.
- To simplify the sensitivity analysis a functional form was fitted to the population data: $N(L) = 10^{-0.102L + 8.20}$, $L \geq 50$ (⇒ error of less than 5%)
Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let P and $A = [a_1, \ldots, a_n]$ denote the price and the vector of attributes of a property:
Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let P and $A = [a_1, \ldots, a_n]$ denote the price and the vector of attributes of a property:
Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let P and $A = [a_1, \ldots, a_n]$ denote the price and the vector of attributes of a property:

$$P = P(A)$$
Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let P and $A = [a_1, \ldots, a_n]$ denote the price and the vector of attributes of a property:

\[
P = P(A) \\
p_i = \frac{\partial P(A)}{\partial a_i}
\]
Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let P and $A = [a_1, \ldots, a_n]$ denote the price and the vector of attributes of a property:

$$P = P(A)$$

$$p_i = \frac{\partial P(A)}{\partial a_i}$$

<table>
<thead>
<tr>
<th>Change</th>
<th>REBUS</th>
<th>ASEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/o health</td>
<td>w/ health</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>55</td>
<td>363</td>
</tr>
<tr>
<td>66</td>
<td>65</td>
<td>495</td>
</tr>
<tr>
<td>75</td>
<td>74</td>
<td>654</td>
</tr>
<tr>
<td>Railway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>66</td>
<td>65</td>
<td>308</td>
</tr>
<tr>
<td>75</td>
<td>74</td>
<td>3,027</td>
</tr>
</tbody>
</table>

Average exchange rate 2004: EUR 1 = SEK 9.13
Noise tariffs calculated per vehicle and unit

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Speed km/h</th>
<th>Passengers/Freight<sup>a</sup></th>
<th>Tariff, SEK/km per vehicle</th>
<th>Tariff, SEK/km per unit<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td>110</td>
<td>4</td>
<td>0.06</td>
<td>0.0148</td>
</tr>
<tr>
<td>Bus</td>
<td>90</td>
<td>50</td>
<td>0.24</td>
<td>0.0048</td>
</tr>
<tr>
<td>X2 high speed</td>
<td>135</td>
<td>310</td>
<td>0.37</td>
<td>0.0012</td>
</tr>
<tr>
<td>X14 EMU</td>
<td>135</td>
<td>350</td>
<td>0.29</td>
<td>0.0008</td>
</tr>
<tr>
<td>X60 EMU</td>
<td>135</td>
<td>370</td>
<td>0.07</td>
<td>0.0002</td>
</tr>
<tr>
<td>Freight traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck</td>
<td>90</td>
<td>42</td>
<td>0.24</td>
<td>0.0057</td>
</tr>
<tr>
<td>Truck (low noise)</td>
<td>90</td>
<td>42</td>
<td>0.08</td>
<td>0.0018</td>
</tr>
<tr>
<td>Freight train</td>
<td>90</td>
<td>1500</td>
<td>2.82</td>
<td>0.0019</td>
</tr>
<tr>
<td>F. tr. (K-blocks)</td>
<td>90</td>
<td>1500</td>
<td>0.45</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

SEK price level 2004.

^a: Number of passenger and metric ton of freight, respectively.

^b: Per passenger and metric ton for passenger and freight traffic, respectively.
Sensitivity analysis: Traffic and technology

SRMC of freight per metric ton relative to a reference case of no change

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Changes as percent and dB</th>
<th>-50%</th>
<th>-25%</th>
<th>-10%</th>
<th>±0</th>
<th>+10%</th>
<th>+25%</th>
<th>+50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-1.8dB</td>
<td>-1.0dB</td>
<td>-0.4dB</td>
<td>±0</td>
<td>+0.4dB</td>
<td>+1.0dB</td>
<td>+1.8dB</td>
</tr>
<tr>
<td>Total traffic volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway</td>
<td></td>
<td>0.988</td>
<td>0.994</td>
<td>0.997</td>
<td>1.000</td>
<td>1.003</td>
<td>1.006</td>
<td>1.011</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td>0.992</td>
<td>0.996</td>
<td>0.998</td>
<td>1.000</td>
<td>1.002</td>
<td>1.004</td>
<td>1.008</td>
</tr>
<tr>
<td>Noise level of vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway</td>
<td></td>
<td>0.668</td>
<td>0.801</td>
<td>0.910</td>
<td>1.000</td>
<td>1.099</td>
<td>1.248</td>
<td>1.494</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td>0.667</td>
<td>0.800</td>
<td>0.909</td>
<td>1.000</td>
<td>1.100</td>
<td>1.250</td>
<td>1.500</td>
</tr>
<tr>
<td>Noise level of fleet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway</td>
<td></td>
<td>0.661</td>
<td>0.796</td>
<td>0.907</td>
<td>1.000</td>
<td>1.102</td>
<td>1.256</td>
<td>1.512</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td>0.661</td>
<td>0.796</td>
<td>0.907</td>
<td>1.000</td>
<td>1.102</td>
<td>1.256</td>
<td>1.512</td>
</tr>
<tr>
<td>Number of exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway</td>
<td></td>
<td>0.667</td>
<td>0.800</td>
<td>0.909</td>
<td>1.000</td>
<td>1.100</td>
<td>1.250</td>
<td>1.500</td>
</tr>
<tr>
<td>Road</td>
<td></td>
<td>0.667</td>
<td>0.800</td>
<td>0.909</td>
<td>1.000</td>
<td>1.100</td>
<td>1.250</td>
<td>1.500</td>
</tr>
</tbody>
</table>

Railway and Road refers to a 1,500 and a 60 metric ton vehicle, respectively.
Sensitivity analysis: Monetary values

SRMC of freight per metric ton for binary changes relative to a reference case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ref.</th>
<th>Railway</th>
<th>Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including health comp.</td>
<td>1.00</td>
<td>1.87</td>
<td>1.11</td>
</tr>
<tr>
<td>Switch val. road/rail</td>
<td>1.00</td>
<td>8.28</td>
<td>0.12</td>
</tr>
<tr>
<td>ASEK 4a val.</td>
<td>1.00</td>
<td>7.51</td>
<td>0.91</td>
</tr>
<tr>
<td>ASEK 4a (5 dB rail bonus)</td>
<td>1.00</td>
<td>2.21</td>
<td>0.91</td>
</tr>
</tbody>
</table>

a: ASEK 4 refers to the official Swedish monetary noise values (SIKA, 2008).
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
Discussion 1

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - “Time of day” (Andersson and Ögren, 2007)

Charging the polluters

Discussion
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - “Time of day” (Andersson and Ögren, 2007)
- Absolute levels of the SRMC estimated in this study of limited interest
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - “Time of day” (Andersson and Ögren, 2007)
- Absolute levels of the SRMC estimated in this study of limited interest
 - Conservative estimates: Underestimation of “exposed” and health cost component not included
Discussion I

- Standardized and official calculation methods and values used to develop “appropriate” and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - “Time of day” (Andersson and Ögren, 2007)
- Absolute levels of the SRMC estimated in this study of limited interest
 - Conservative estimates: Underestimation of “exposed” and health cost component not included
 - Based on traffic situation and “exposed” in Lerum
Discussion II

- Estimates show, though, that:

Insensitive to changes in traffic volume
Sensitive to number of exposed
Sensitive to monetary values used

Previous research have also shown that estimates are sensitive to:
- threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)
- discount rate chosen for estimating the monetary value (Andersson et al. 2010a)

Important to examine the SRMC on both vehicle and passenger/ton of freight level.
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used

- Previous research have also shown that estimates are sensitive to:
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used

- Previous research have also shown that estimates are sensitive to:
 - threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used

- Previous research have also shown that estimates are sensitive to:
 - threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)
 - discount rate chosen for estimating the monetary value (Andersson et al. 2010a)
Discussion II

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used

- Previous research have also shown that estimates are sensitive to:
 - threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)
 - discount rate chosen for estimating the monetary value (Andersson et al. 2010a)

- Important to examine the SRMC on both vehicle and passanger/ton of freight level
Discussion III

- Acceptability will probably be low for noise charges since there is no benefit for users
Discussion III

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
Discussion III

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - A more sophisticated model is also more costly \(\Rightarrow \) BCA
Acceptability will probably be low for noise charges since there is no benefit for users
- Our model has the potential of reaching a higher level of acceptability
- A more sophisticated model is also more costly ⇒ BCA

The next step?
Discussion III

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - A more sophisticated model is also more costly ⇒ BCA

- The next step?
Discussion III

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - A more sophisticated model is also more costly ⇒ BCA

- The next step? Noise maps are being created for “busy areas” in the EU, but rules of thumps for number of exposed necessary to implement a model like ours
Research in progress: Area classification

Teckenförklaring
Marginalkostn, SEK/km
- 0 - 1
- 1 - 5
- 5 - 20
- 20 -

0 100 200 300 km